Как добавить математический модуль в программу
Перейти к содержимому

Как добавить математический модуль в программу

  • автор:

Работа с модулями: создание, подключение инструкциями import и from

Python 3 логотип

Модулем в Python называется любой файл с программой (да-да, все те программы, которые вы писали, можно назвать модулями). В этой статье мы поговорим о том, как создать модуль, и как подключить модуль, из стандартной библиотеки или написанный вами.

Каждая программа может импортировать модуль и получить доступ к его классам, функциям и объектам. Нужно заметить, что модуль может быть написан не только на Python, а например, на C или C++.

Подключение модуля из стандартной библиотеки

Подключить модуль можно с помощью инструкции import. К примеру, подключим модуль os для получения текущей директории:

 import указывается название модуля. Одной инструкцией можно подключить несколько модулей, хотя этого не рекомендуется делать, так как это снижает читаемость кода. Импортируем модули time и random.
 
 

Использование псевдонимов

Если название модуля слишком длинное, или оно вам не нравится по каким-то другим причинам, то для него можно создать псевдоним, с помощью ключевого слова as.

 

Инструкция from

Подключить определенные атрибуты модуля можно с помощью инструкции from. Она имеет несколько форматов:

Первый формат позволяет подключить из модуля только указанные вами атрибуты. Для длинных имен также можно назначить псевдоним, указав его после ключевого слова as.
 
 

Следует заметить, что не все атрибуты будут импортированы. Если в модуле определена переменная __all__ (список атрибутов, которые могут быть подключены), то будут подключены только атрибуты из этого списка. Если переменная __all__ не определена, то будут подключены все атрибуты, не начинающиеся с нижнего подчёркивания. Кроме того, необходимо учитывать, что импортирование всех атрибутов из модуля может нарушить пространство имен главной программы, так как переменные, имеющие одинаковые имена, будут перезаписаны.

Создание своего модуля на Python

Теперь пришло время создать свой модуль. Создадим файл mymodule.py, в которой определим какие-нибудь функции:

Теперь в этой же папке создадим другой файл, например, main.py:
Выведет:
Поздравляю! Вы сделали свой модуль! Напоследок отвечу ещё на пару вопросов, связанных с созданием модулей:

Как назвать модуль?

Помните, что вы (или другие люди) будут его импортировать и использовать в качестве переменной. Модуль нельзя именовать также, как и ключевое слово (их список можно посмотреть тут). Также имена модулей нельзя начинать с цифры. И не стоит называть модуль также, как какую-либо из встроенных функций. То есть, конечно, можно, но это создаст большие неудобства при его последующем использовании.

Куда поместить модуль?

Туда, где его потом можно будет найти. Пути поиска модулей указаны в переменной sys.path. В него включены текущая директория (то есть модуль можно оставить в папке с основной программой), а также директории, в которых установлен python. Кроме того, переменную sys.path можно изменять вручную, что позволяет положить модуль в любое удобное для вас место (главное, не забыть в главной программе модифицировать sys.path).

Можно ли использовать модуль как самостоятельную программу?

Можно. Однако надо помнить, что при импортировании модуля его код выполняется полностью, то есть, если программа что-то печатает, то при её импортировании это будет напечатано. Этого можно избежать, если проверять, запущен ли скрипт как программа, или импортирован. Это можно сделать с помощью переменной __name__, которая определена в любой программе, и равна "__main__", если скрипт запущен в качестве главной программы, и имя, если он импортирован. Например, mymodule.py может выглядеть вот так:

Для вставки кода на Python в комментарий заключайте его в теги

Модуль math

Python 3 логотип

Модуль math – один из наиважнейших в Python. Этот модуль предоставляет обширный функционал для работы с числами.

math.ceil(X) – округление до ближайшего большего числа.

math.copysign(X, Y) - возвращает число, имеющее модуль такой же, как и у числа X, а знак - как у числа Y.

math.fabs(X) - модуль X.

math.factorial(X) - факториал числа X.

math.floor(X) - округление вниз.

math.fmod(X, Y) - остаток от деления X на Y.

math.frexp(X) - возвращает мантиссу и экспоненту числа.

math.ldexp(X, I) - X * 2 i . Функция, обратная функции math.frexp().

math.fsum(последовательность) - сумма всех членов последовательности. Эквивалент встроенной функции sum(), но math.fsum() более точна для чисел с плавающей точкой.

math.isfinite(X) - является ли X числом.

math.isinf(X) - является ли X бесконечностью.

math.isnan(X) - является ли X NaN (Not a Number - не число).

math.modf(X) - возвращает дробную и целую часть числа X. Оба числа имеют тот же знак, что и X.

math.trunc(X) - усекает значение X до целого.

math.exp(X) - e X .

math.expm1(X) - e X - 1. При X → 0 точнее, чем math.exp(X)-1.

math.log(X, [base]) - логарифм X по основанию base. Если base не указан, вычисляется натуральный логарифм.

math.log1p(X) - натуральный логарифм (1 + X). При X → 0 точнее, чем math.log(1+X).

math.log10(X) - логарифм X по основанию 10.

math.log2(X) - логарифм X по основанию 2.

math.pow(X, Y) - X Y .

math.sqrt(X) - квадратный корень из X.

math.acos(X) - арккосинус X. В радианах.

math.asin(X) - арксинус X. В радианах.

math.atan(X) - арктангенс X. В радианах.

math.atan2(Y, X) - арктангенс Y/X. В радианах. С учетом четверти, в которой находится точка (X, Y).

math.cos(X) - косинус X (X указывается в радианах).

math.sin(X) - синус X (X указывается в радианах).

math.tan(X) - тангенс X (X указывается в радианах).

math.hypot(X, Y) - вычисляет гипотенузу треугольника с катетами X и Y (math.sqrt(x * x + y * y)).

math.degrees(X) - конвертирует радианы в градусы.

math.radians(X) - конвертирует градусы в радианы.

math.cosh(X) - вычисляет гиперболический косинус.

math.sinh(X) - вычисляет гиперболический синус.

math.tanh(X) - вычисляет гиперболический тангенс.

math.acosh(X) - вычисляет обратный гиперболический косинус.

math.asinh(X) - вычисляет обратный гиперболический синус.

math.atanh(X) - вычисляет обратный гиперболический тангенс.

math.erf(X) - функция ошибок.

math.erfc(X) - дополнительная функция ошибок (1 - math.erf(X)).

math.gamma(X) - гамма-функция X.

math.lgamma(X) - натуральный логарифм гамма-функции X.

math.pi - pi = 3,1415926.

math.e - e = 2,718281.

Для вставки кода на Python в комментарий заключайте его в теги

  • Модуль csv - чтение и запись CSV файлов
  • Создаём сайт на Django, используя хорошие практики. Часть 1: создаём проект
  • Онлайн-обучение Python: сравнение популярных программ
  • Книги о Python
  • GUI (графический интерфейс пользователя)
  • Курсы Python
  • Модули
  • Новости мира Python
  • NumPy
  • Обработка данных
  • Основы программирования
  • Примеры программ
  • Типы данных в Python
  • Видео
  • Python для Web
  • Работа для Python-программистов
  • Сделай свой вклад в развитие сайта!
  • Самоучитель Python
  • Карта сайта
  • Отзывы на книги по Python
  • Реклама на сайте

Модули и их импорт в Python

Встроенные в язык программирования функции доступны сразу. Чтобы их вызывать, не надо выполнять никаких дополнительных действий. Однако за время существования любого популярного языка на нем было написано столько функций и классов, которые оказались востребованными множеством программистов и в разных областях, что включить весь этот объем кода в сам язык если возможно, то нецелесообразно.

Чтобы разрешить проблему доступа к дополнительным возможностям языка, в программировании стало общепринятой практикой использовать так называемые модули, пакеты и библиотеки. Каждый модуль содержит коллекцию функций и классов, предназначенных для решения задач из определенной области. Так в модуле math языка Python содержатся математические функции, модуль random позволяет генерировать псевдослучайные числа, в модуле datetime содержатся классы для работы с датами и временем, модуль sys предоставляет доступ к системным переменным и т. д.

Количество модулей для языка Python огромно, что связано с популярностью языка. Часть модулей собрана в так называемую стандартную библиотеку. Стандартная она потому, что поставляется вместе с установочным пакетом. Однако существуют сторонние библиотеки. Они скачиваются и устанавливаются отдельно.

Для доступа к функционалу модуля, его надо импортировать в программу. После импорта интерпретатор "знает" о существовании дополнительных классов и функций и позволяет ими пользоваться.

В Питоне импорт осуществляется командой import . При этом существует несколько способов импорта. Рассмотрим работу с модулем на примере math . Итак,

>>> import math 

Ничего не произошло. Однако в глобальной области видимости появилось имя math . Если до импорта вы упомянули бы имя math , то возникла бы ошибка NameError . Теперь же

>>> math

В программе завелся объект math , относящийся к классу module .

Чтобы увидеть перечень функций, входящих в этот модуль, воспользуемся встроенной в Python функцией dir() , передав ей в качестве аргумента имя модуля:

>>> dir(math) ['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'comb', 'copysign', 'cos', 'cosh', 'degrees', 'dist', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'isqrt', 'lcm', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2', 'modf', 'nan', 'nextafter', 'perm', 'pi', 'pow', 'prod', 'radians', 'remainder', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc', 'ulp'] 

Проигнорируем имена с двойными подчеркиваниями. Все остальное – имена функций и констант (переменных, которые не меняют своих значений), включенных в модуль math. Чтобы вызвать функцию из модуля, надо впереди написать имя модуля, поставить точку, далее указать имя функции, после чего в скобках передать аргументы, если они требуются. Например, чтобы вызвать функцию pow из math, надо написать так:

>>> math.pow(2, 2) 4.0 

Обратите внимание, эта другая функция pow() , не та, что встроена в сам язык. "Обычная" функция pow() возвращает целое, если аргументы целые числа:

>>> pow(2, 2) 4 

Для обращения к константе скобки не нужны:

>>> math.pi 3.141592653589793 

Если мы не знаем, что делает та или иная функция, то можем получить справочную информацию о ней с помощью встроенной в язык Python функции help() :

>>> help(math.gcd) Help on built-in function gcd in module math: gcd(*integers) Greatest Common Divisor. (END) 

Для выхода из интерактивной справки надо нажать клавишу q . В данном случае сообщается, что функция вычисляет наибольший общий делитель. Описание модулей и их содержания также можно посмотреть в официальной документации на сайте python.org.

Второй способ импорта – это когда импортируется не сам модуль, а только необходимые функции из него.

>>> from math import gcd, sqrt, hypot 

Перевести можно как "из модуля math импортировать функции gcd , sqrt и hypot ".

В таком случае при их вызове не надо перед именем функции указывать имя модуля:

>>> gcd(100, 150) 50 >>> sqrt(16) 4.0 >>> hypot(3, 4) 5.0 

Чтобы импортировать сразу все функции из модуля:

>>> from math import * 

Импорт через from не лишен недостатка. В программе уже может быть идентификатор с таким же именем, как имя одной из импортируемых функций или констант. Ошибки не будет, но одно из них окажется "затерто":

>>> pi = 3.14 >>> from math import pi >>> pi 3.141592653589793 

Здесь исчезает значение 3.14, присвоенное переменной pi . Это имя теперь указывает на число из модуля math . Если импорт сделать раньше, чем присвоение значения pi , то будет все наоборот:

>>> from math import pi >>> pi = 3.14 >>> pi 3.14 

В связи с этим более опасен именно импорт всех функций. Так как в этом случае очень легко не заметить подмены значений идентификаторов.

Однако можно изменить имя идентификатора из модуля на какое угодно:

>>> from math import pi as P >>> P 3.141592653589793 >>> pi 3.14 

В данном случае константа pi из модуля импортируется под именем P . Другой смысл подобных импортов – сокращение имен, так как есть модули с длинными именами, а имена функций и классов в них еще длиннее. Если в программу импортируется всего пара сущностей, и они используются в ней часто, то имеет смысл переименовать их на более короткий вариант. Сравните:

>>> import calendar >>> calendar.weekheader(2) 'Mo Tu We Th Fr Sa Su' 
>>> from calendar import weekheader as week >>> week(3) 'Mon Tue Wed Thu Fri Sat Sun' 

Во всех остальных случаях лучше оставлять идентификаторы содержимого модуля в пространстве имен самого модуля и получать доступ к ним через имя модуля, то есть выполнять импорт командой import имя_модуля , а вызывать, например, функции через имя_модуля.имя_функции() .

Практическая работа. Создание собственного модуля

Программист на Python всегда может создать собственный модуль, чтобы использовать его в нескольких своих программах или даже предоставить в пользование всему миру. В качестве тренировки создадим модуль с функциями для вычисления площадей прямоугольника, треугольника и круга:

from math import pi, pow def rectangle(a, b): return round(a * b, 2) def triangle(a, h): return round(0.5 * a * h, 2) def circle(r): return round(pi * pow(r, 2), 2) 

Здесь также иллюстрируется принцип, что один модуль может импортировать другие. В данном случае импортируются функции из модуля math .

Поместите данный код в отдельный файл square.py . Однако куда поместить сам файл?

Когда интерпретатор Питона встречает команду импорта, то просматривает на наличие файла-модуля определенные каталоги. Их перечень можно увидеть по содержимому sys.path :

>>> import sys >>> sys.path ['', '/usr/lib/python310.zip', '/usr/lib/python3.10', '/usr/lib/python3.10/lib-dynload', '/home/pl/.local/lib/python3.10/site-packages', '/usr/local/lib/python3.10/dist-packages', '/usr/lib/python3/dist-packages'] 

Это список адресов в Linux. В Windows он будет несколько другим. Первый элемент – пустая строка, что обозначает текущий каталог, т.е. место, где сохранена сама программа, импортирующая модуль. Если вы сохраните файл-модуль и файл-программу в одном каталоге, то интерпретатор без труда найдет модуль.

Также модуль можно положить в любой другой из указанных в списке каталогов. Тогда он будет доступен для всех программ на Python, а также его можно будет импортировать в интерактивном режиме.

Можно добавить в sys.path свой каталог. Однако в этом случае либо код программы должен содержать команды изменения значения sys.path , либо надо править конфигурационный файл операционной системы. В большинстве случаев лучше так не делать.

Поместите файл square.py в тот же каталог, где будет исполняемая программа. Ее код должен включать инструкцию импорта модуля square (при импорте расширение файла не указывается) и вызов той функции и с теми аргументами, которые ввел пользователь. То есть у пользователя надо спросить, площадь какой фигуры он хочет вычислить. Далее запросить у него аргументы для соответствующей функции. Передать их в функцию из модуля square , а полученный оттуда результат вывести на экран.

Примечание. Исполнение модуля как самостоятельного скрипта, а также создание строк документации, которые отображает встроенная в Python функция help() , будут рассмотрены в курсе объектно-ориентированного программирования.

Примеры решения и дополнительные уроки в pdf-версии курса

X Скрыть Наверх

Python. Введение в программирование

Как установить модуль math?

5dc01aac5ea06619610659.png

Мне для работы с Питоном понадобился модуль math, и попытавшись его установить через pip, у меня ничего не получилось, я не понимаю, в чем заключается проблема и как её исправить, помогите пожалуйста разобраться
На компьютере установлен Python 3.8.0, если это как-то поможет

  • Вопрос задан более трёх лет назад
  • 11571 просмотр

1 комментарий

Простой 1 комментарий

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *