Что такое средняя скорость изменения функции
Перейти к содержимому

Что такое средняя скорость изменения функции

  • автор:

Конев В.В. Дифференцирование функций

Средняя и мгновенная скорости изменения функции

Дифференцирование функций

Основные теоремы

Формула Тейлора


(1)

Термины «изменение аргумента» и «изменение функции» порождают ассоциацию с неким динамическим процессом, в котором аргумент играет роль времени, а функция этого аргумента характеризует пройденный путь или скорость движения частицы. Перечень подобных толкований можно продолжить, подразумевая под изменением функции, например, изменение масса тела, заключенной в сфере малого радиуса, при смещении центра сферы из одной точки в другую и так далее. Поэтому математики отдают предпочтение нейтральным терминам, называя разность приращением функции, а величину ∆xприращением аргумента.

Пусть, например, . Тогда средняя скорость изменения функции на промежутке [1, 3] равна

Физическая интерпретация средней скорости изменения функции вполне очевидна. Если описывает зависимость пройденного частицей пути от времени x ее движения, то представляет собой среднюю скорость движения частицы за промежуток времени ∆x.

Мгновенная скорость изменения функции представляет собой среднюю скорость изменения функции на бесконечно малом промежутке ∆x. Чем меньше ∆x, тем ближе средняя скорость к мгновенной скорости. Термин “мгновенная скорость изменения функции” выражает суть обсуждаемого понятия, однако обычно мгновенную скорость называют производной функции и обозначают символическим выражением .
Таким образом, производная функции представляет собой предел отношения приращения функции к приращению аргумента при стремлении последнего к нулю:

(2)

(Выражение в левой части этого равенства читается как “дэ эф по дэ икс”.) Производная функции обозначается также символом , который читается как “эф штрих от икс”.

Функция, имеющая конечную производную в некоторой точке, называется дифференцируемой в этой точке. Говорят, что функция дифференцируема на промежутке, если она дифференцируема в каждой точке этого промежутка.

Производную функции можно найти численно, графически или вычислить с помощью алгебраических формул. Для численного нахождения в точке x используется приближенная формула

(3)

Проиллюстрируем диапазон применимости этой формулы численными расчетами. Пусть, например, . Результаты вычислений производной функции в точке x = 1 при различных значениях ∆x представлены в таблице 1.

Таблица 1.

x 1 0.1 0.01 0/001 0.000001
6 5.1 5.01 5.001 5.000001

Очевидно, что последовательность значений приближается к числу 5 по мере уменьшения ∆x. Поэтому можно предположить, что точное значение равно пяти. Именно таким и является точное значение.

Для оценки “на лету” достаточно выбрать одно малое значение ∆x и вычислить разностное отношение (3). Более точную оценку дает сбалансированное отношение

(4)

Как найти среднюю скорость изменения функции

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали авторы-волонтеры.

Количество просмотров этой статьи: 15 584.

В этой статье:

Средняя скорость изменения функции – это отношение изменения функции к изменению независимой переменной. Эта величина обозначается А(х).

Метод 1 из 2:

Часть 1: Определение средней скорости изменения функции

Функция. Это соответствие между переменными величинами, в котором каждому значению некоторой независимой переменной «x» соответствует определенное значение зависимой переменной «у».

Переменная. Это величина, в процессе своего изменения принимающая различные значения. Переменные, как правило, обозначаются через «х» и «у».

Угловой коэффициент. Он равен тангенсу угла между положительным направлением оси абсцисс и данной прямой линией. Угловой коэффициент характеризует скорость изменения линейной функции.

Секущая. Это прямая, пересекающая две или более точки, лежащих на кривой. При вычислении средней скорости изменения функции вы находите угловой коэффициент секущей между двумя заданными точками.

Основная формула для вычисления средней скорости изменения функции показана на рисунке.

42 Приращение функции и вычисление средней скорости изменения функции.

Одним из основных свойств, характеризующих функцию, является скорость ее изменения. Пусть аргумент х функции f(x) получил приращение Δх, т.е. начальное значение аргумента равно х, а конечное х+Δх. Вычислим приращение функции, обусловленное приращением аргумента:

Δf(х) = f(x + Δх) — f(x) (1)

Приращение функции или аргумента – алгебраическая величина, которую нельзя отождествлять с «увеличением». Действительно, если f(x+Δх)

Средняя скорость изменения функции на участке от х до х+Δх, вычисляется по формуле:

(2)

Замечание: Средняя скорость изменения, как характеристика функции обладает существенным недостатком, проилюстрируем этот недостаток на примере. Пусть функции f1(x) и f2(x) получили одинаковые приращения при изменении аргумента от х до х+Δх, следовательно, одинаковыми будут и средние скорости изменения функций f1 и f2 на этом отрезке. Между тем, на практике может быть, что функция f2(х) меняется гораздо быстрее, резче, чем f1 (х).

43 Геометрический смысл производной.

Рассмотрим график функции y = f ( x ):

Из рис.1 видно, что для любых двух точек A и B графика функции:

где — угол наклона секущей AB.

Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точку B, то неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует: производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.

Уравнение касательной. Выведем уравнение касательной к графику функции в точке A ( x0 , f ( x0 ) ). В общем случае уравнение прямой с угловым коэффициентом f ’( x0 ) имеет вид:

y = f ’( x0 ) · x + b .

Чтобы найти b, воспользуемся тем, что касательная проходит через точку A:

f ( x0 ) = f ’( x0 ) · x0 + b ,

отсюда, b = f ( x0 ) – f ’( x0 ) · x0 , и подставляя это выражение вместо b, мы получим уравнение касательной:

y = f ( x0 ) + f ’( x0 ) · ( x – x0 )

44 Связь между непрерывностью и существованием производной.

Если функциядифференцируема в т. х, то она не-

прерывна в этой точке

Докажем выполнение условия 2) из 0.1 (п. 8.1):

Следствие: В точке разрыва функция не может иметь производную. Обратное к теореме утверждение неверно, т.е. из непрерывности функциив т. х не следует существование производной в т. х. Например,непрерывна в т. х = О, график функции не имеет касательной в точке с абсциссой х = 0 и функция не дифференцируема в т. х = 0 (рис. 9.2).

45) Правила вычисления производной от суммы, произведения и частного функций.

Основные правила вычисления производных, связанные с арифметическими действиями:

Мгновенная и средняя скорость

Если материальная точка находится в движении, то ее координаты подвергаются изменениям. Этот процесс может происходить быстро или медленно.

Мгновенная и средняя скорость

Модуль средней скорости по пути равняется υ = S ∆ t .

Мгновенная скорость точки. Формулы

Мгновенная скорость характеризует движение в определенный момент времени. Выражение «скорость тела в данный момент времени» считается не корректным, но применимым при математических расчетах.

Мгновенная скорость точки. Формулы

Пример 1

Дан закон прямолинейного движения точки x ( t ) = 0 , 15 t 2 — 2 t + 8 . Определить ее мгновенную скорость через 10 секунд после начала движения.

Решение

Мгновенной скоростью принято называть первую производную радиус-вектора по времени. Тогда ее запись примет вид:

υ ( t ) = x ˙ ( t ) = 0 . 3 t — 2 ; υ ( 10 ) = 0 . 3 × 10 — 2 = 1 м / с .

Ответ: 1 м / с .

Движение материальной точки задается уравнением x = 4 t — 0 , 05 t 2 . Вычислить момент времени t о с т , когда точка прекратит движение, и ее среднюю путевую скорость υ .

Решение

Вычислим уравнение мгновенной скорости, подставим числовые выражения:

υ ( t ) = x ˙ ( t ) = 4 — 0 , 1 t .

4 — 0 , 1 t = 0 ; t о с т = 40 с ; υ 0 = υ ( 0 ) = 4 ; υ = ∆ υ ∆ t = 0 — 4 40 — 0 = 0 , 1 м / с .

Ответ: заданная точка остановится по прошествии 40 секунд; значение средней скорости равняется 0 , 1 м / с .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *