Как посчитать стороны прямоугольника зная площадь
Перейти к содержимому

Как посчитать стороны прямоугольника зная площадь

  • автор:

Длина сторон прямоугольника

Онлайн калькулятор предоставляет возможность вычислить длину сторон прямоугольника, если известна его площадь, диагональ или периметр.

Для нахождения длины стороны прямоугольника, зная диагональ d и одну из сторон a, можно воспользоваться формулой: b = √(d^2 — a^2)

Для нахождения длины другой стороны прямоугольника, зная периметр P и одну из сторон a, можно использовать следующую формулу: b = P — 2a

Для нахождения длины стороны прямоугольника, зная площадь S и одну из сторон a, можно воспользоваться следующей формулой: b = S / a

Вычислить сторону (длину или ширину) прямоугольника.

С помощью онлайн калькулятора вы сможете вычислить сторону (длину или ширину) прямоугольника через формулы. Чтобы вычислить сторону прямоугольника, просто введите ваши данные.

Содержимое

  1. Сторона прямоугольника через диагональ и угол между диагональю и стороной.
  2. Сторона прямоугольника через диагональ и известную сторону.
  3. Сторона прямоугольника через площадь и другую известную сторону.
  4. Сторона прямоугольника через периметр и другую известную сторону.
  5. Сторона прямоугольника через диагональ и угол между диагоналями.

прямоугольник

  1. Противоположные стороны прямоугольника параллельны и равны.
  2. Стороны прямоугольника являются его высотами.
  3. Прилегающие стороны прямоугольника всегда перпендикулярны.
  4. Сторона прямоугольника равна произведению диагонали на угол между диагональю и стороной.
  5. Сторона прямоугольника равна отношению площади прямоугольника на другую известную сторону.

Сторона прямоугольника через диагональ и угол между диагональю и стороной.

Сторона прямоугольника через диагональ и угол между диагональю и стороной

a = D · sin α

Где: D — диагональ, α — угол между диагональю и стороной.

Стороны прямоугольника

Зная стороны прямоугольника, можно вычислить все остальные его параметры, используя следующий ход действий. Периметр прямоугольника представляет собой удвоенную сумму его сторон, поэтому его можно сразу вычислить. P=2(a+b) Площадь прямоугольника равна произведению его сторон, поэтому ее также можно найти сразу. S=ab Диагонали в прямоугольнике являются конгруэнтными, каждая из них образует прямоугольный треугольник со сторонами прямоугольника. Из теоремы Пифагора каждая диагональ будет равна квадратному корню из суммы квадратов сторон прямоугольника. (рис. 56.1) d_1=d_2=√(a^2+b^2 ) Из этого же прямоугольного треугольника можно найти углы α и β при диагоналях, зная только стороны прямоугольника. Отношения катетов друг к другу дают тангенс или котангенс углов треугольника, поэтому α и β будут равны арктангенсу отношений сторон, а дальше значение в градусах можно найти, используя таблицы тангенсов. α=arc tan⁡〖b/a〗 β=arc tan⁡〖a/b〗 Углы γ и δ, образованные пересечением диагоналей, как видно из чертежа, через прямоугольный треугольник с полуосью, равны удвоенным значениям α и β соответственно. (рис.56.2) γ=2α δ=2β Так как углы у прямоугольника все равны друг другу, вокруг него можно описать окружность. Центр окружности будет находиться в точке пересечения диагоналей, и следовательно, радиус описанной окружности будет равен половине диагонали. (рис.56.3) R=d/2=√(a^2+b^2 )/2

Как найти стороны прямоугольника при известных периметре и площади

В этой статье я хочу рассмотреть две математические задачи повышенной сложности для 4 класса.

Видеоурок по теме этой статьи можно посмотреть по ссылке.

Площадь прямоугольника 32 см 2 , а периметр – 24 см. Найти стороны прямоугольника.

Площадь прямоугольника 126 см 2 , а периметр – 46 см. Найти его длину и ширину.

С этими задачами, я уверен, без труда справится более старший школьник, знакомый с решением системы уравнений и квадратных уравнений. Кстати, подобная задача есть в учебнике по геометрии Атанасяна, глава VI № 454 пункт б за 8 класс.

Но почему же эти задачи указаны в математических сборниках как задачи для 4 класса, в котором еще не изучают алгебраические понятия и методы решения? Нет ли здесь ошибки?

Нет, никакой ошибки здесь нет. Эти, и аналогичные им задачи можно решить и без использования алгебраических знаний.

Первое, что приходит на ум – это по значению периметра прямоугольника (а периметр – это удвоенная сумма двух его сторон) найти сумму двух сторон, а после простым подбором определить два числа, произведение которых равно данной по условию площади прямоугольника, а сумма – половине периметра.

Я хочу показать вам математически точное решение, которое безо всяких подборов приводит к правильному результату.

Нахождение сторон прямоугольника при известных периметре и площади

Рассмотрим первую задачу:

Площадь прямоугольника 32 см 2 , а периметр – 24 см. Найти стороны прямоугольника.

Как известно, периметр прямоугольника находится по формуле \( P=2\cdot (a+b)>\) , площадь – по формуле \( S=a\cdot b>\) .

Так как периметр прямоугольника – это удвоенное произведение суммы двух сторон прямоугольника, то мы можем найти эту сумму, разделив значение периметра на 2:

А дальше мы рассуждаем так.

Найдем максимально возможную площадь прямоугольника при данном значении суммы двух его сторон, то есть, полупериметра. Так как полупериметр – четное число, то очевидно, что прямоугольник с максимально возможным значением площади при сумме его двух сторон, равной 12 , – это квадрат со стороной \( 12 : 2 = 6>\) см.

Тогда площадь этого квадрата равна

По условию нашей задачи площадь прямоугольника составляет 32 см 2 . Находим разницу между полученной площадью квадрата и заданной площадью прямоугольника.

Это значит, что нам нужно изменить стороны рассматриваемого квадрата со стороной 6 см так, чтобы уменьшилась его площадь, но не изменился периметр.

Так как квадрат имеет самую большую площадь среди прямоугольников с одинаковым периметром, то для уменьшения площади нам нужно увеличить разницу между его длиной и шириной. То есть, ширину уменьшить, а длину увеличить на одно и то же число.

Площадь 4 см 2 – это квадрат со стороной 2 см. Это и есть нужное нам число.

Тогда, ширина искомого прямоугольника будет равна:

Проверим найденные длины сторон, определив периметр и площадь полученного прямоугольника:

Задача решена верно.

Теперь рассмотрим вторую задачу.

Площадь прямоугольника 126 см 2 , а периметр – 46 см. Найти его длину и ширину.

Находим полупериметр, то есть, сумму двух сторон прямоугольника.

Найдем максимально возможную площадь прямоугольника при данном значении суммы двух его сторон, то есть, полупериметра. Так как полупериметр – нечетное число, значит, нам нужен такой прямоугольник, разница между значениями ширины и длины которого в натуральных числах минимальна, то есть, единица. Это прямоугольник со сторонами 11 и 12 , т.к. \( 23=11+12>\).

Площадь такого прямоугольника равна:

Разница между полученной площадью и заданной по условию задачи составляет:

6 см 2 – это площадь прямоугольника со сторонами 2 и 3 см. Чтобы уменьшить площадь нашего прямоугольника со сторонами 11 см и 12 см, нужно увеличить разницу между значениями этих сторон, а именно, уменьшить его короткую сторону, то есть, ширину. При этом длину также нужно увеличить на это же число, чтобы сохранить значение периметра.

Для этого ширину 11 мы уменьшаем на одноименное значение, то есть, тоже на ширину прямоугольника с площадью 6 см 2 , а именно, на 2 .

Кстати, подумайте и напишите в комментарии к этой статье, почему мы рассматриваем разницу в площадях именно как прямоугольник с максимальной площадью (например, в этой задаче как прямоугольник 2 на 3 , а не 1 на 6 , а в первой – как квадрат 2 на 2 , а не прямоугольник 1 на 4 ), и почему ширину уменьшаем именно на ширину (в этой задаче 11 – 2 , а не 11 – 3 ).

Находим ширину искомого прямоугольника:

Длину нужно увеличить также на это число, чтобы не изменился периметр прямоугольника:

И эта задача решена тоже верно.

На этом все. Не забудьте написать в комментарии ответы на вопросы, почему мы рассматриваем разницу в площадях именно как прямоугольник с максимальной площадью, и почему ширину уменьшаем именно на ширину.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 3.6 / 5. Количество оценок: 12

Оценок пока нет. Поставьте оценку первым.

Так как вы нашли эту публикацию полезной.

Подписывайтесь на нас в соцсетях!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *