Что означает э в математике
Перейти к содержимому

Что означает э в математике

  • автор:

Что значит в математике перевернутая Э?

Знак ∈ означает что принадлежит, а знак ∉ означает что не принадлежит. Вы же сами все знаете, судя по тэгу.

автор вопроса выбрал этот ответ лучшим
комментировать
в избранное ссылка отблагодарить
ворчу­ нов [107K]
5 лет назад

Перевернутая (зеркальная) буква Э , выглядит так ∈ и называется в математике знаком принадлежности к определенному множеству.

Если этот знак перечеркнут ∉, то это означает математическое понятие не принадлежит определенному множеству.

комментировать
в избранное ссылка отблагодарить
Крист­ ина Дерко [7]
2 года назад

Связь между коллекцией и коллекцией, также известная как связь подмножества, пример A=1, 2, B=1, 2, 3, то 1 ? A, 2 ? A, 3 ? B

Как правило, полный текст некоторых указанных объектов называется коллекцией и обозначается прописными буквами A, B, C, D,; Каждый объект в коллекции называется элементом этой коллекции и обозначается строчными буквами A, B, C, D.

Принадлежность, математический символ » ?», обозначающий связь между элементом и коллекцией. Если A является элементом коллекции A, то говорит, что A принадлежит коллекции A и записывается как A ?A; Если A не является элементом в коллекции A, скажите, что A не принадлежит к коллекции A и записывается как AA.

Например, если использовать A для обозначения коллекции, состоящей из «Все простые числа в пределах от 1 до 20», то есть 3Связь между коллекцией и коллекцией, также известная как связь подмножества, пример A=1, 2, B=1, 2, 3, то 1 ? A, 2 ? A, 3 ? B

Как правило, полный текст некоторых указанных объектов называется коллекцией и обозначается прописными буквами A, B, C, D,; Каждый объект в коллекции называется элементом этой коллекции и обозначается строчными буквами A, B, C, D.

Принадлежность, математический символ » ?», обозначающий связь между элементом и коллекцией. Если A является элементом коллекции A, то говорит, что A принадлежит коллекции A и записывается как A ?A; Если A не является элементом в коллекции A, скажите, что A не принадлежит к коллекции A и записывается как AA.

Например, если использовать A для обозначения коллекции, состоящей из «Все простые числа в пределах от 1 до 20», то есть 3Связь между коллекцией и коллекцией, также известная как связь подмножества, пример A=?1, 2?, B=?1, 2, 3?, то 1?A, 2?A, 3?B

Как правило, полный текст некоторых указанных объектов называется коллекцией и обозначается прописными буквами A, B, C, D,; Каждый объект в коллекции называется элементом этой коллекции и обозначается строчными буквами A, B, C, D.

Принадлежность, математический символ » ?», обозначающий связь между элементом и коллекцией. Если A является элементом коллекции A, то говорит, что A принадлежит коллекции A и записывается как A ?A; Если A не является элементом в коллекции A, скажите, что A не принадлежит к коллекции A и записывается как a?A.

Например, если использовать A для обозначения коллекции, состоящей из «Все простые числа в пределах от 1 до 20», то есть 3?A.

Что означает знак э в другую сторону в математике?

Это знак означает принадлежность элемента к множеству.
Например: клавиатура принадлежит множеству устройств ввода — клавиатура ∈ устройства ввода.
Просьба проголосовать за этот ответ!

Остальные ответы

принадлежность

Михаил СмирновЗнаток (312) 2 года назад

Это обозначает, что принадлежит.

Символ пренадлежности

принадлежит

∈ — принадлежит
∉ — не принадлежит

Похожие вопросы

Ваш браузер устарел

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Числа π и e

Все знают геометрический смысл числа π — это длина окружности с единичным диаметром:

А вот смысл другой важной константы, e, имеет свойство быстро забываться. То есть, не знаю, как вам, а мне каждый раз стоит усилий вспомнить, чем же так замечательно это число, равное 2,7182818284590. (значение я, однако, по памяти записал). Поэтому я решил написать заметку, чтобы больше из памяти не вылетало.

Число e по определению — предел функции y = (1 + 1 / x) x при x → ∞:

x y
1 (1 + 1 / 1) 1 = 2
2 (1 + 1 / 2) 2 = 2,25
3 (1 + 1 / 3) 3 = 2,3703703702.
10 (1 + 1 / 10) 10 = 2,5937424601.
100 (1 + 1 / 100) 100 = 2,7048138294.
1000 (1 + 1 / 1000) 1000 = 2,7169239322.
lim× → ∞ = 2,7182818284590.

Это определение, к сожалению, не наглядно. Непонятно, чем замечателен этот предел (несмотря на то, что он называется «вторым замечательным»). Подумаешь, взяли какую-то неуклюжую функцию, посчитали предел. У другой функции другой будет.

Но число e почему-то всплывает в целой куче самых разных ситуаций в математике.

Для меня главный смысл числа e раскрывается в поведении другой, куда более интересной функции, y = k x . Эта функция обладает уникальным свойством при k = e, которое можно показать графически так:

В точке 0 функция принимает значение e 0 = 1. Если провести касательную в точке x = 0, то она пройдёт к оси абсцисс под углом с тангенсом 1 (в жёлтом треугольнике отношение противолежащего катета 1 к прилежащему 1 равно 1). В точке 1 функция принимает значение e 1 = e . Если провести касательную в точке x = 1, то она пройдёт под углом с тангенсом e (в зелёном треугольнике отношение противолежащего катета e к прилежащему 1 равно e). В точке 2 значение e 2 функции снова совпадает с тангенсом угла наклона касательной к ней. Из-за этого, заодно, сами касательные пересекают ось абсцисс ровно в точках −1, 0, 1, 2 и т. д.

Среди всех функций y = k x (например, 2 x , 10 x , π x и т. д.), функция e x — единственная обладает такой красотой, что тангенс угла её наклона в каждой её точке совпадает со значением самой функции. Значит по определению значение этой функции в каждой точке совпадает со значением её производной в этой точке: (e x )´ = e x . Почему-то именно число e = 2,7182818284590. нужно возводить в разные степени, чтобы получилась такая картинка.

Именно в этом, на мой вкус, состоит его смысл.

Числа π и e входят в мою любимую формулу — формулу Эйлера, которая связывает 5 самых главных констант — ноль, единицу, мнимую единицу i и, собственно, числа π и е:

e iπ + 1 = 0

Почему число 2,7182818284590. в комплексной степени 3,1415926535. i вдруг равно минус единице? Ответ на этот вопрос выходит за рамки заметки и мог бы составить содержание небольшой книги, которая потребует некоторого начального понимания тригонометрии, пределов и рядов.

Меня всегда поражала красота этой формулы. Возможно, в математике есть и более удивительные факты, но для моего уровня (тройка в физико-математическом лицее и пятёрка за комплексный анализ в универе) это самое главное чудо.

ПОРЯДОК В ХАОСЕ

Впервые встречается в трактате английского математика Джон Валиса «О конических сечениях».

Сложение, вычитание. Я.Видман (1489).

Знаки плюса и минуса придумали, по-видимому, в немецкой математической школе «коссистов» (то есть алгебраистов). Они используются в учебнике Яна (Йоханнеса) Видмана «Быстрый и приятный счёт для всех торговцев», изданном в 1489 году. До этого сложение обозначалось буквой p (от латинского plus «больше») или латинским словом et (союз «и»), а вычитание – буквой m (от латинского minus «менее, меньше»). У Видмана символ плюса заменяет не только сложение, но и союз «и». Происхождение этих символов неясно, но, скорее всего, они ранее использовались в торговом деле как признаки прибыли и убытка. Оба символа вскоре получили общее распространение в Европе — за исключением Италии, которая ещё около века использовала старые обозначения.

Деление. И.Ран (1659), Г.Лейбниц (1684).

Уильям Оутред в качестве знака деления использовал косую черту /. Двоеточием деление стал обозначать Готфрид Лейбниц. До них часто использовали также букву D. Начиная с Фибоначчи, используется также горизонтальная черта дроби, употреблявшаяся ещё у Герона, Диофанта и в арабских сочинениях. В Англии и США распространение получил символ ÷ (обелюс), который предложил Иоганн Ран (возможно, при участии Джона Пелла) в 1659 году. Попытка Американского национального комитета по математическим стандартам (National Committee on Mathematical Requirements) вывести обелюс из практики (1923) оказалась безрезультатной.

Факториал. К.Крамп (1808).

Факториал числа n (обозначается n!, произносится «эн факториал») – произведение всех натуральных чисел до n включительно: n! = 1·2·3·. ·n. Например, 5! = 1·2·3·4·5 = 120. По определению полагают 0! = 1. Факториал определён только для целых неотрицательных чисел. Факториал числа n равен числу перестановок из n элементов. Например, 3! = 6, действительно,

– все шесть и только шесть вариантов перестановок из трёх элементов.

Термин «факториал» ввёл французский математик и политический деятель Луи Франсуа Антуан Арбогаст (1800), обозначение n! – французский математик Кристиан Крамп (1808).

Равенство. Р.Рекорд (1557).

Знак равенства предложил уэльский врач и математик Роберт Рекорд в 1557 году; начертание символа было намного длиннее нынешнего, так как имитировало изображение двух параллельных отрезков. Автор пояснил, что нет в мире ничего более равного, чем два параллельных отрезка одинаковой длины. До этого в античной и средневековой математике равенство обозначалось словесно (например est egale). Рене Декарт в XVII веке при записи стал использовать æ (от лат. aequalis), а современный знак равенства он использовал чтобы указать, что коэффициент может быть отрицательным. Франсуа Виет знаком равенства обозначал вычитание. Символ Рекорда получил распространение далеко не сразу. Распространению символа Рекорда мешало то обстоятельство, что с античных времён такой же символ использовался для обозначения параллельности прямых; в конце концов было решено символ параллельности сделать вертикальным. В континентальной Европе знак » i8befgs3″ >

Перпендикулярность. П.Эригон (1634).

Перпендикулярность – взаимное расположение двух прямых, плоскостей или прямой и плоскости, при котором указанные фигуры составляют прямой угол. Знак ⊥ для обозначения перпендикулярности ввёл в 1634 году французский математик и астроном Пьер Эригон. Понятие перпендикулярности имеет ряд обобщений, но всем им, как правило, сопутствует знак ⊥.

Пересечение, объединение. Дж.Пеано (1888).

Пересечение множеств – это множество, которому принадлежат те и только те элементы, которые одновременно принадлежат всем данным множествам. Объединение множеств – множество, содержащее в себе все элементы исходных множеств. Пересечением и объединением называются и операции над множествами, ставящие в соответствие некоторым множествам новые по указанным выше правилам. Обозначаются ∩ и ∪, соответственно. Например, если

Автором знаков ∩ и ∪ является итальянский математик Джузеппе Пеано. Впервые они были использованы в 1888 году.

Квантор всеобщности, квантор существования. Г.Генцен (1935), Ч.Пирс (1885).

Квантор – общее название для логических операций, указывающих область истинности какого-либо предиката (математического высказывания). Философы давно обращали внимание на логические операции, ограничивающие область истинности предиката, однако не выделяли их в отдельный класс операций. Хотя кванторно-логические конструкции широко используются как в научной, так и в обыденной речи, их формализация произошла только в 1879 году, в книге немецкого логика, математика и философа Фридриха Людвига Готлоба Фреге «Исчисление понятий». Обозначения Фреге имели вид громоздких графических конструкций и не были приняты. Впоследствии было предложено множество более удачных символов, но общепринятыми стали обозначения ∃ для квантора существования (читается «существует», «найдётся»), предложенное американским философом, логиком и математиком Чарльзом Пирсом в 1885 году, и ∀ для квантора всеобщности (читается «любой», «каждый», «всякий»), образованное немецким математиком и логиком Герхардом Карлом Эрихом Генценом в 1935 году по аналогии с символом квантора существования (перевёрнутые первые буквы английских слов Existence (существование) и Any (любой)). Например, запись

читается так: «для любого ε>0 существует δ>0 такое, что для всех х, не равных х0 и удовлетворяющих неравенству |x–x0|

Отношение длины окружности к диаметру. У.Джонс (1706), Л.Эйлер (1736).

Математическая константа, иррациональное число. Число «пи», старое название – лудольфово число. Как и всякое иррациональное число, π представляется бесконечной непереодической десятичной дробью:

Впервые обозначением этого числа греческой буквой π воспользовался британский математик Уильям Джонс в книге «Новое введение в математику», а общепринятым оно стало после работ Леонарда Эйлера. Это обозначение происходит от начальной буквы греческих слов περιφερεια – окружность, периферия и περιμετρος – периметр. Иоганн Генрих Ламберт доказал иррациональность π в 1761 году, а Адриен Мари Лежандр в 1774 году доказал иррациональность π2. Лежандр, и Эйлер предполагали, чтоπ может быть трансцендентным, т.е. не может удовлетворять никакому алгебраическому уравнению с целыми коэффициентами, что было в конечном итоге доказано в 1882 году Фердинандом фон Линдеманом.

Умножение. У.Оутред (1631), Г.Лейбниц (1698).

Знак умножения в виде косого крестика ввёл в 1631 году англичанин Уильям Оутред. До него использовали чаще всего букву M, хотя предлагались и другие обозначения: символ прямоугольника (французский математик Эригон, 1634), звёздочка (швейцарский математик Иоганн Ран, 1659). Позднее Готфрид Вильгельм Лейбниц заменил крестик на точку (конец XVII века), чтобы не путать его с буквой x; до него такая символика встречалась у немецкого астронома и математика Региомонтана (XV век) и английского учёного Томаса Хэрриота (1560 –1621).

Процент. М. де ла Порт (1685).

Сотая доля целого, принимаемого за единицу. Само слово «процент» происходит от латинского «pro centum», что означает в переводе «на сто». В 1685 году в Париже была издана книга «Руководство по коммерческой арифметике» Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали «cto» (сокращённо от cento). Однако наборщик принял это «cto» за дробь и напечатал «%». Так из-за опечатки этот знак вошёл в обиход.

Модуль, абсолютная величина. К.Вейерштрасс (1841).

Модуль, абсолютная величина действительного числа х – неотрицательное число, определяемое следующим образом: |х| = х при х ≥ 0, и |х| = –х при х ≤ 0. Например, |7| = 7, |– 0,23| = –(–0,23) = 0,23. Модуль комплексного числа z = a + ib – действительное число, равное √(a2 + b2).

Считают, что термин «модуль» предложил использовать английский математик и философ, ученик Ньютона, Роджер Котс. Готфрид Лейбниц тоже использовал эту функцию, которую называл «модулем» и обозначал: mol x. Общепринятое обозначение абсолютной величины введено в 1841 году немецким математиком Карлом Вейерштрассом. Для комплексных чисел это понятие ввели французские математики Огюстен Коши и Жан Робер Арган в начале XIX века. В 1903 году австрийский учёный Конрад Лоренц использовал эту же символику для длины вектора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *